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Abstract 

The Bak-Tang-Wiesenfeld sandpile model provdes a simple and elegant system with which 
to demonstate self-organized criticality. This model has rather remarkable mathematical 
properties first elucidated by Dhar. I demonstrate some of these properties graphically with 
a simple computer simulation. 
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In the mid 1980's Per Bak's office was across the hall from mine. This was quite 
fun, with exciting physics always in the air. One day Per mentioned that there was a 
condensed matter seminar that I might be interested in; so, I went to listen to Chao 
Tang describe this new concept of self organized criticality. I indeed found it quite 
fascinating, but not entirely for the right reasons. At the time I had been playing 
with cellular automata on minicomputers, and I saw that this would give me a new 
model to play with. 

This particular audience is fully familiar with the concept of self organized criti- 
cality, wherein some dissipative systems naturally flow to a critical state [l]. These 
systems exhibit physics on all scales, and do this without fine tuning of any param- 
eters, such as the temperature. 

Self-organized criticality provides a nice complement to the concept of chaos. In 
traditional discussions of the latter, one exposes highly complex behavior arising 
from systems of only a few degrees of freedom. With self-organized criticality one 
normally starts with many degrees of freedom, such as the possible locations of 
grains of sand in a sandpile, and then extracts simple general features. 
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The original Bak, Tang, Wiesenfeld paper presents one particularly simple model to 
study this phenomenon. This is a cellular automaton model formulated on a finite 
two dimensional square lattice. On each site of this lattice is a height variable, a 
positive integer Zi. Depending on how you look at it, this variable represents some- 
thing between a “slope” and a “height” for the sand at this point. If this variable is 
too large, i.e. Zi > 3, the site is said to be unstable. In one time step, all unstable 
sites undergo a simultaneous tumbling, reducing the corresponding site by 4 units 
and adding one to each nearest neighbor. With finite and open boundaries, sand 
spreads until it is lost at the edges. Thus repetition of this process will eventually ~ 

converge to stability, with all Zi < 4. One can then add some more sand and watch 
the system relax. 

As I said above, at the time of these developments I was exploring simple cellular 
automata models on the newly appearing inexpensive microcomputers. At the time 
Per was doing similar things; the cover of the December 1983 issue of Physics 
Today shows a photograph of Per Bak’s hands in front of a simple Ising simulation 
on a Commodore 64. This sandpile model struck me as a natural thing to extend 
my programs. This hobby has continued over the years, and culminated in a suite of 
simulation programs for the X window system [2]. Although they are not as highly 
developed, this reference also includes versions for Windows and the Amiga. 

With these programs one can do the classic avalanche experiment live on a com- 
puter screen. Figure 1 shows a critical initial state, an active avalanche, and the 
region covered by the avalanche after it stops. 

After I had played with this model for a couple of years, Deepak Dhar produced 
some rather remarkable results on the analytic properties of the model [3]. The 
above programs allow a rather elegant demonstration of some of these results. 

To make things precise, let me begin with some definitions. A “configuration” C for 
the sandpile model is a set of integer heights Zi on the sites i of a two dimensional 
finite lattice. Associated with each site is a “tumbling operator” ti. When applied to 
a configuration C this operator reduces Zi by four units and adds one to each of its 
neighbors. This is characterized by a “tumbling matrix” Aij which indicates how 
much site j changes with a tumbling at site i. Thus tic is a new configuration with 
modified heights 

For the simple nearest neighbor model 
zj + zj - Aij 

i = j  
i, j neighbors 

otheiwise 
A . .  = 

1.l 

We then define the relaxation process by tumbling all sites with Zi > 3 and then re- 
peating this to stability. Stability will always be achieved eventually since in the 
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process sand spreads towards the boundaries, making the total amount of sand 
monotonically decrease. Applying sand to a stable system is formalized with the 
definition of an “addition operator” ai so that aiC is a new configuration obtained 
by taking Zi + Zi + 1 and then relaxing. 

Note that after dumping lots of sand to the system, some stable configurations can- 
not be reached. For example, one can never make two adjacent two adjacent Zi = 0. 
This is because in trying to tumble one to zero, the neighbor gains a grain, and vice 
versa. This leads to the definition of the “recursive set” R, which consists of any 
stable configuration that can be obtained by adding sand to any state. This set is 
not empty since one can always reach the “minimally stable state” C*, defined by 
having all Zi = 3. 

With these definitions at hand, I now introduce two remarkable theorems proved by 
Dhar [3]. The first is that the the ai commute 

aiajC = a .a.C 
1 1  

The proof uses the linearity of the ti. In the relaxation processes represented by the 
two sides of this equation, the order of tumblings can be rearranged, but the final 
configurations are equal. This Abelian nature is reminiscent of the process of long 
addition. In this analogy the tumbling process is like carrying. 

The second theorem is that if we restrict ourselves to the recursive set, then the op- 
erator ai is invertible. More precisely, suppose I am given given some configuration 
C which is in the recursive set R.  Then for any specified site i there exists a unique 
configuration C‘ also in R such that a i d  = C. Thus we say that C‘ = a;lC. 
Dar showed that these theorems have some interesting immediate consequences. 
One is that we can now characterize the “critical ensemble” as being an ensemble of 
recursive states where any given recursive state is equally likely as any other. Also, 
the number of recursive states is simply the determinant of the toppling matrix [AI. 
For a large system of N sites this determinant grows as [AI N (3.2102.. .)N. Thus 
the recursive states become a set of measure zero in comparison to the 4N total 
stable states. 

Dhar later provided a simple algorithm to determine if a configuration is recursive. 
This “burning algorithm” starts with adding one sand grain to C from every open 
edge. This is easily implemented by turning on “sandy boundaries” for one time 
step. On a rectangular system, the process dumps one grain on each edge site and 
two on corner sites. After this addition, the system is allowed to update to stability. 
Then the original configuration C is recursive if and only if each site tumbles ex- 
actly once during the relaxation process. Figure 2 shows this process in action for a 
representative recursive state. In this figure light blue indicates those sites that have 
already tumbled. On completion, the entire lattice acquires this color. 
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The burning algorithm leads to an amusing result on sub-lattices. Consider extract- 
ing from a lattice an arbitrary connected sub-lattice. If on this sub-lattice we set the 
sand heights to their corresponding values in some recursive state on the full lat- 
tice, then the resulting configuration is recursive on the subset. This follows since 
in the burning of the large lattice, topplings on sites just outside the sub-lattice will 
dump exactly the amount of sand on the sub-lattice as required to start the burning 
algorithm there. Then this will all burn, just as if it was on the larger lattice. 

But this result has the deeper consequence that any avalanche started on a recursive 
state by any addition of sand will be simply connected. If an avalanche region is not 
simply connected, i.e. it has an island of untoppled sites, then the topplings outside 
this region would have created just the dumping on the region necessary to burn it. 
This explains the absence of any untumbled islands in the final avalanche region of 
Fig. 1. It is an amusing game to take a recursive state and add sand in attempts to 
create an untumbled region bounded on all sides by a tumbled region. Somehow 
the system knows that this is not allowed. But take away some sand so as to exit 
the recursive set, and then creating untumbled islands becomes easy. 

There is a natural mapping between the group generated by the addition operators 
ai and the recursive set itself. Indeed, we easily can define an operation of addition 
between configurations. Given two stable configurations C and C' with slopes Zi, 
2; respectively, we define C @ C' by relaxing Zi + 2;. Under @ the recursive states 
form an Abelian group 

This raises another amusing question [4]. Since we have a group, we must have an 
identity state. What is the configuration representing this state I? This state must 
both be recursive itself and have the property that I @ C = C if and only if C is in 
the recursive set. Indeed, it is the unique nontrivial configuration with I @ I = I .  It 
cannot be the empty state, since that is not recursive. 

A simple algorithm to construct I follows from the identity 

a;"= n aj 
neighbors 

This follows since adding four grains of sand to any site will force a tumbling. 
Combining this with the fact that ai invertible on recursive set gives the identity 

1 =a; rl[ aj -1 

neighbors 

If we multiply this equation over all sites, the ai factors cancel on interior sites. 
But one power of ai is left on each edge and two grains of sand are added on 
each corner. Indeed, this product forms the basis of the burning algorithm. From 
this construction we find a configuration, call it Io, with one grain of sand on each 
edge and two on each corner. This configuration has the property that if added to a 
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recursive state it leaves that state unchanged, i.e. if and only if C is recursive 

I0@C=C 

However Io is not itself recursive since it has lots of empty sites in the middle. 
Therefore Io is not the desired I .  To find the latter, we can simply iterate the above 
process. For this start with and empty table, make the boundary conditions sandy, 
and run until the table fills up. Then go back to open boundaries and relax back to 
stability. The final state is then the desired identity configuration. This process is 
sketched in Figure 3. 

Hopefully I have convinced you that this simple sandpile model is lots of fun to play 
with. The results I have mentioned are just a few of many. Some simple additional 
properties include the fact that if C recursive, then in constructing C @ I  the number 
of topplings at any given site is independent of C.  Also, a single added grain n sites 
from the edge can tumble no site more than n times. Finally a single grain added 
anywhere can tumble a site n steps from the edge no more than n times. 
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Fig. 1. The progress of an avalanche on a typical critical sandpile configuration on a 198 by 
198 lattice. The light blue region is where the avalanched has progressed. The first image 
is the initial state, the second while the avalanche is underway, and the final shows all sites 
that have tumbled during the full relaxation process. The color code for the site heights 
appears below the figure. 

Fig. 2. A critical configuration in the process of undergoing the burning algorithm. Drop- 
ping one grain of sand from each open edge causes an avalanche that tumbles every site 
exactly once. A state not in the critical ensemble will leave some sites unburnt. 

Fig. 3. Constructing the identity state. An initially empty state is run with sandy boundaries 
giving an inflow as in the first image. After the system with the sandy boundaries stops 
changing, we have the situation in the middle. Then, on switching to open boundaries, sand 
runs off to leave the identity state shown in the third image. 
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